Cooperativity in F-actin: binding of gelsolin at the barbed end affects structure and dynamics of the whole filament.

نویسندگان

  • E Prochniewicz
  • Q Zhang
  • P A Janmey
  • D D Thomas
چکیده

We have studied the effect of gelsolin, a Ca-dependent actin-binding protein, on the microsecond rotational dynamics of actin filaments, using time-resolved phosphorescence (TPA) and absorption anisotropy (TAA) of erythrosin iodoacetamide attached to Cys374 on actin. Polymerization of actin in the presence of gelsolin resulted in substantial increases in the rate and amplitude of anisotropy decay, indicating increased rotational motion. Analysis indicates that the effect of gelsolin cannot be explained by increased rates of overall (rigid-body) rotations of shortened filaments, but reflects changes in intra-filament structure and dynamics. We conclude that gelsolin induces (1) a 10 degrees change in the orientation of the absorption dipole of the probe relative to the actin filament, indicating a conformational change in actin, and (2) a threefold decrease in torsional rigidity of the filament. This result, which is consistent with complementary electron microscopic observations on the same preparations, directly demonstrates long-range cooperativity in F-actin, where a conformational change induced by the binding of a single gelsolin molecule to the barbed end is propagated along inter-monomer bonds throughout the actin filament.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulators of actin filament barbed ends at a glance.

Cells respond to external stimuli by rapidly remodeling their actin cytoskeleton. At the heart of this function lies the intricately controlled regulation of individual filaments. The barbed end of an actin filament is the hotspot for the majority of the biochemical reactions that control filament assembly. Assays performed in bulk solution and with single filaments have enabled characterizatio...

متن کامل

Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein

Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity per...

متن کامل

Depolymerization of actin filaments by profilin. Effects of profilin on capping protein function.

Profilin interacts with the barbed ends of actin filaments and is thought to facilitate in vivo actin polymerization. This conclusion is based primarily on in vitro kinetic experiments using relatively low concentrations of profilin (1-5 microm). However, the cell contains actin regulatory proteins with multiple profilin binding sites that potentially can attract millimolar concentrations of pr...

متن کامل

Structural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study.

The intracellular distribution and migration of many protein complexes and organelles is regulated by the dynamics of the actin filament. Many actin filament end-binding proteins play crucial roles in actin dynamics, since polymerization and depolymerization of actin protomers occur only at the filament ends. We present here an EM structure of the complex of the actin filament and hetero-dimeri...

متن کامل

Regulation of the actin cycle in vivo by actin filament severing.

Cycling of actin subunits between monomeric and filamentous phases is essential for cell crawling behavior. We investigated actin filament turnover rates, length, number, barbed end exposure, and binding of cofilin in bovine arterial endothelial cells moving at different speeds depending on their position in a confluent monolayer. Fast-translocating cells near the wound edge have short filament...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 260 5  شماره 

صفحات  -

تاریخ انتشار 1996